Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 146
Filtrar
1.
J Hazard Mater ; 469: 133954, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38484657

RESUMO

Globally, rice is becoming more vulnerable to arsenic (As) pollution, posing a serious threat to public food safety. Previously Debaryomyces hansenii was found to reduce grain As content of rice. To better understand the underlying mechanism, we performed a genome analysis to identify the key genes in D. hansenii responsible for As tolerance and plant growth promotion. Notably, genes related to As resistance (ARR, Ycf1, and Yap) were observed in the genome of D. hansenii. The presence of auxin pathway and glutathione metabolism-related genes may explain the plant growth-promoting potential and As tolerance mechanism of this novel yeast strain. The genome annotation of D. hansenii indicated that it contains a repertoire of genes encoding antioxidants, well corroborated with the in vitro studies of GST, GR, and glutathione content. In addition, the effect of D. hansenii on gene expression profiling of rice plants under As stress was also examined. The Kyoto Encyclopedia of Genes and Genomes (KEGG) database revealed 307 genes, annotated in D. hansenii-treated rice, related to metabolic pathways (184), photosynthesis (12), glutathione (10), tryptophan (4), and biosynthesis of secondary metabolite (117). Higher expression of regulatory elements like AUX/IAA and WRKY transcription factors (TFs), and defense-responsive genes dismutases, catalases, peroxiredoxin, and glutaredoxins during D. hansenii+As exposure was also observed. Combined analysis revealed that D. hansenii genes are contributing to stress mitigation in rice by supporting plant growth and As-tolerance. The study lays the foundation to develop yeast as a beneficial biofertilizer for As-prone areas.


Assuntos
Arsênio , Debaryomyces , Oryza , Debaryomyces/genética , Debaryomyces/metabolismo , Oryza/metabolismo , Arsênio/toxicidade , Arsênio/metabolismo , Saccharomyces cerevisiae/genética , Perfilação da Expressão Gênica , Glutationa/metabolismo
2.
Bioresour Technol ; 393: 130119, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38040306

RESUMO

Production of single cell protein (SCP) by recovering ammonia nitrogen from biogas slurry shows great potential against protein scarcity and unsustainable production of plant and animal proteins. Herein, a high-alkali-salt-tolerant yeast strain, Debaryomyces hansenii JL8-0, was isolated and demonstrated for high-efficient SCP production. This strain grew optimally at pH 8.50 and 2500 mg/L NH4+-N, and it could efficiently utilize acetate as the additional carbon source. Under optimal conditions, SCP biomass of 32.21 g/L and productivity of 0.32 g/L·h-1 were obtained in fed-batch fermentation. Remarkably, nearly complete (97.40 %) ammonia nitrogen from biogas slurry was recovered, probably due to its high affinity for NH4+-N. Altogether, this strain showed advantages in terms of cell biomass titer, productivity, and yield. A cultivation strategy was proposed by co-culturing D. hansenii with other compatible yeast strains to achieve high-efficient SCP production from biogas slurry, which could be a promising alternative technology for biogas slurry treatment.


Assuntos
Debaryomyces , Proteínas na Dieta , Animais , Debaryomyces/metabolismo , Biocombustíveis , Saccharomyces cerevisiae , Amônia/metabolismo , Nitrogênio/metabolismo
3.
Yeast ; 40(11): 550-564, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37870109

RESUMO

Debaryomyces hansenii is a yeast with considerable biotechnological potential as an osmotolerant, stress-tolerant oleaginous microbe. However, targeted genome modification tools are limited and require a strain with auxotrophic markers. Gene targeting by homologous recombination has been reported to be inefficient, but here we describe a set of reagents and a method that allows gene targeting at high efficiency in wild-type isolates. It uses a simple polymerase chain reaction (PCR)-based amplification that extends a completely heterologous selectable marker with 50 bp flanks identical to the target site in the genome. Transformants integrate the PCR product through homologous recombination at high frequency (>75%). We illustrate the potential of this method by disrupting genes at high efficiency and by expressing a heterologous protein from a safe chromosomal harbour site. These methods should stimulate and facilitate further analysis of D. hansenii strains and open the way to engineer strains for biotechnology.


Assuntos
Debaryomyces , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Reação em Cadeia da Polimerase , Marcação de Genes , Biotecnologia
4.
N Biotechnol ; 78: 105-115, 2023 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-37848161

RESUMO

The halotolerant non-conventional yeast Debaryomyces hansenii can grow in media containing high concentrations of salt (up to 4 M), metabolize alternative carbon sources than glucose, such as lactose or glycerol, and withstand a wide range of temperatures and pH. These inherent capabilities allow this yeast to grow in harsh environments and use alternative feedstock than traditional commercial media. For example, D. hansenii could be a potential cell factory for revalorizing industrial salty by-products, using them as a substrate for producing new valuable bioproducts, boosting a circular economy. In this work, three different salty by-products derived from the dairy and biopharmaceutical industry have been tested as a possible feedstock for D. hansenii's growth. The yeast was not only able to grow efficiently in all of them but also to produce a recombinant protein (Yellow Fluorescent Protein, used as a model) without altering its performance. Moreover, open cultivations at different laboratory scales (1.5 mL and 1 L) were performed under non-sterile conditions and without adding fresh water or any nutritional supplement to the cultivation, making the process cheaper and more sustainable.


Assuntos
Debaryomyces , Saccharomycetales , Debaryomyces/metabolismo , Saccharomyces cerevisiae/metabolismo , Rios , Cloreto de Sódio , Proteínas Recombinantes/metabolismo , Saccharomycetales/metabolismo
5.
Front Immunol ; 14: 1247199, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37711618

RESUMO

The present study explores the effects of two supplementation levels of Debaryomyces hansenii (1.1% and 2.2%) as a probiotic in a reference low fish meal-based diet on the skin mucosal tissue in Sparus aurata. This study includes the evaluation of fish performance coupled with a holistic study of the skin mucosa: i) a transcriptomic study of the skin tissue, and ii) the evaluation of its secreted mucus both in terms of skin mucosal-associated biomarkers and its defensive capacity by means of co-culture analysis with two pathogenic bacteria. Results showed that after 70 days of diet administration, fish fed the diet supplemented with D. hansenii at 1.1% presented increased somatic growth and a better feed conversion ratio, compared to fish fed the control diet. In contrast, fish fed the diet including 2.2% of the probiotic presented intermediate values. Regarding gene regulation, the probiotic administration at 1.1% resulted in 712 differentially expressed genes (DEGs), among which 53.4% and 46.6% were up- and down-regulated, respectively. In particular, D. hansenii modulated some skin biological processes related to immunity and metabolism. Specifically, D. hansenii administration induced a strong modulation of some immune biological-related processes (61 DEGs), mainly involved in B- and T-cell regulatory pathways. Furthermore, dietary D. hansenii promoted the skin barrier function by the upregulation of anchoring junction genes (23 DEGs), which reinforces the physical defense against potential skin damage. In contrast, the skin showed modulated genes related to extracellular exosome and membrane organization (50 DEGs). This modulated functioning is of great interest, particularly in relation to the increased skin mucus defensive capacity observed in the bacterial co-culture in vitro trials, which could be related to the increased modulation and exudation of the innate immune components from the skin cells into the mucus. In summary, the modulation of innate immune parameters coupled with increased skin barrier function and cell trafficking potentiates the skin's physical barrier and mucus defensive capacity, while maintaining the skin mucosa's homeostatic immune and metabolic status. These findings confirmed the advantages of D. hansenii supplementation in low fish meal-based diets, demonstrating the probiotic benefits on cultured marine species.


Assuntos
Debaryomyces , Dourada , Animais , Dieta , Suplementos Nutricionais , Pele
6.
Sci Rep ; 13(1): 11819, 2023 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-37479715

RESUMO

Four yeast strains were isolated from the gut of stingless bee, collected in Churdhar, Himachal Pradesh, India. Physiological characterization, morphological examination, and sequence analysis of small subunit ribosomal RNA (18S rRNA) genes, internal transcribed spacer (ITS) region, and D1/D2 domain of the large subunit rRNA gene revealed that the four strains isolated from the gut of stingless bee belonged to the Debaryomyces clade. Strain CIG-23HT showed sequence divergence of 7.5% from Debaryomyces nepalensis JCM 2095T, 7.8% from Debaryomyces udenii JCM 7855T, and Debaryomyces coudertii JCM 2387T in the D1/D2 domain. In the ITS region sequences, strain CIG-23HT showed a 15% sequence divergence from Debaryomyces nepalensis JCM 2095T and Debaryomyces coudertii JCM 2387T. In 18S rRNA gene sequence, the strain CIG-23HT showed 1.14% sequence divergence from Debaryomyces nepalensis JCM 2095 and and Debaryomyces coudertii JCM 2387, and 0.83% sequence divergence from Debaryomyces hansenii NRRL Y-7426. Strain CIG-23HT can utilize more carbon sources than closely related species. The findings suggest that strain CIG-23HT is a novel species of the genus Debaryomyces, and we propose to name it as Debaryomyces apis f.a., sp. nov. The holotype is CBS 16297T, and the isotypes are MTCC 12914T and KCTC 37024T. The MycoBank number of Debaryomyces apis f.a., sp. nov. is MB836065. Additionally, a method using cresol red and Bromothymol blue pH indicator dyes was developed to screen for lipase producers, which is more sensitive and efficient than the currently used phenol red and rhodamine B dye-based screening methods, and avoids the problem of less differentiable zone of hydrolysis.


Assuntos
Debaryomyces , Abelhas/genética , Animais , Debaryomyces/genética , Corantes , Filogenia , Lipase/genética , RNA Ribossômico/genética , Concentração de Íons de Hidrogênio , Análise de Sequência de DNA , DNA Fúngico/genética , DNA Fúngico/química , Técnicas de Tipagem Micológica , DNA Espaçador Ribossômico/genética , DNA Espaçador Ribossômico/química
7.
J Sci Food Agric ; 103(15): 7862-7868, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37467398

RESUMO

BACKGROUND: Traditional dry-cured fermented sausages favour the growth of an autochthonous microbial population, which plays an important role in their sensory aspects. However, some moulds can produce mycotoxins such as ochratoxin A (OTA). The biocontrol agents (BCAs) Debaryomyces hansenii FHSCC 253H and Staphylococcus xylosus FHSCC Sx8 have been demonstrated to reduce OTA production in dry-cured meat products, but their influence in the sensory characteristics of sausages has to be tested. The aim of this study was to evaluate the effect of these BCAs on the colour, texture and volatile profile of dry-cured fermented sausages. RESULTS: D. hansenii caused few differences in the tested parameters with respect to the control batch. S. xylosus modified the texture and colour, although the values found were within the range expected for dry-cured fermented sausages 'salchichón'. Additionally, the volatile profile revealed the potential antioxidant effect of both BCAs and their ability to produce compounds associated with the ripened aroma that could increase product acceptability. CONCLUSION: The results indicate that there were no inconveniences in implementing both BCAs during the processing of dry-cured fermented sausages 'salchichón'. Moreover, D. hansenii FHSCC 253H could improve the volatile profile of this product. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Debaryomyces , Produtos da Carne , Produtos da Carne/análise , Cor , Fermentação , Microbiologia de Alimentos
8.
Chemosphere ; 336: 139183, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37302499

RESUMO

Microalgae-based techniques are considered an alternative to traditional activated sludge processes for removing nitrogen from wastewater. Bacteria consortia have been broadly conducted as one of the most important partners. However, fungal effects on the removal of nutrients and changes in physiological properties of microalgae, and their impact mechanisms remain unclear. The current work demonstrates that, adding fungi increased the nitrogen assimilation of microalgae and the generation of carbohydrates compared to pure microalgal cultivation. The NH4+-N removal efficiency was 95.0% within 48 h using the microalgae-fungi system. At 48 h, total sugars (glucose, xylose, and arabinose) accounted for 24.2 ± 4.2% per dry weight in the microalgae-fungi group. Gene ontology (GO) enrichment analysis revealed that, among various processes, phosphorylation and carbohydrate metabolic processes were more prominent. Gene encoding the key enzymes of glycolysis, pyruvate kinase, and phosphofructokinase were significantly up-regulated. Overall, for the first time, this study provides new insights into the art of microalgae-fungi consortia for producing value-added metabolites.


Assuntos
Debaryomyces , Microalgas , Microalgas/metabolismo , Debaryomyces/metabolismo , Nitrogênio/metabolismo , Biomassa , Glucose/metabolismo
9.
Yeast ; 40(7): 265-275, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37170862

RESUMO

Debaryomyces hansenii is a halotolerant/halophilic yeast usually found in salty environments. The yeast accumulated sodium at high concentrations, which improved growth in salty media. In contrast, lithium was toxic even at low concentrations and its presence prevented cell proliferation. To analyse the responses to both cations, metabolite levels, enzymatic activities and gene expression were determined, showing that NaCl and LiCl trigger different cellular responses. At high concentrations of NaCl (0.5 or 1.5 M) cells accumulated higher amounts of the intermediate metabolites glyoxylate and malate and, at the same time, the levels of intracellular oxoglutarate decreased. Additionally, 0.5 M NaCl increased the activity of the enzymes isocitrate lyase and malate synthase involved in the synthesis of glyoxylate and malate respectively and decreased the activity of isocitrate dehydrogenase. Moreover, transcription of the genes coding for isocitrate lyase and malate synthase was activated by NaCl. Also, cells accumulated phosphate upon NaCl exposure. None of these effects was provoked when LiCl (0.1 or 0.3 M) was used instead of NaCl. Lithium induced accumulation of higher amounts of oxoglutarate and decreased the concentrations of glyoxylate and malate to non-detectable levels. Cells incubated with lithium also showed higher activity of the isocitrate dehydrogenase and neither increased isocitrate lyase and malate synthase activities nor the transcription of the corresponding genes. In summary, we show that sodium, but not lithium, up regulates the shunt of the glyoxylic acid in D. hansenii and we propose that this is an important metabolic adaptation to thrive in salty environments.


Assuntos
Debaryomyces , Sódio , Cloreto de Sódio/farmacologia , Malato Sintase/genética , Malato Sintase/metabolismo , Isocitrato Liase/genética , Isocitrato Liase/metabolismo , Malatos , Debaryomyces/metabolismo , Saccharomyces cerevisiae/metabolismo , Isocitrato Desidrogenase/genética , Carbono , Ácidos Cetoglutáricos , Glioxilatos/metabolismo
10.
Int J Food Microbiol ; 397: 110211, 2023 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-37105049

RESUMO

Fusarium head blight (FHB), caused mainly by Fusarium graminearum, is one of the most dangerous diseases of durum wheat. This hemibiotrophic pathogen transitions from the biotrophic phase, during which it penetrates host tissues and secretes trichothecenes, to the necrotrophic phase which leads to the destruction of host tissues. Yeasts applied to spikes often reduce mycotoxin concentrations, but the underlying mechanisms have not been fully elucidated. Therefore, the aim of this study was to analyze the concentrations trichothecenes in durum wheat grain and changes in the F. graminearum transcriptome under the influence the Debaryomyces hansenii antagonistic yeast strain. Debaryomyces hansenii cells adhered to and formed cell aggregates/biofilm on the surface of spikes and pathogenic hyphae. Biological control suppressed the spread of F. graminearum by 90 % and decreased the content of deoxynivalenol (DON) in spikes by 31.2 %. Yeasts significantly reduced the expression of pathogen's genes encoding the rpaI subunit of RNA polymerase I and the activator of Hsp90 ATPase, but they had no effect on mRNA transcript levels of genes encoding the enzymes involved in the biosynthesis of trichothecenes. The yeast treatment reduced the number of F. graminearum operational taxonomic units (OTUs) nearly five-fold and increased the number of D. hansenii OTUs more than six-fold in the spike mycobiome. The mechanisms that suppress infections should be explored to develop effective biological methods for reducing the concentrations mycotoxins in wheat grain.


Assuntos
Debaryomyces , Fusarium , Micotoxinas , Tricotecenos , Tricotecenos/análise , Fusarium/metabolismo , Triticum/metabolismo , Debaryomyces/metabolismo , Saccharomyces cerevisiae/metabolismo , Doenças das Plantas , Micotoxinas/análise , Grão Comestível/química
11.
Yeast ; 40(8): 360-366, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36751139

RESUMO

Flavin mononucleotide (FMN, riboflavin-5'-phosphate) is flavin coenzyme synthesized in all living organisms from riboflavin (vitamin B2 ) after phosphorylation in the reaction catalyzed by riboflavin kinase. FMN has several applications mostly as yellow colorant in food industry due to 200 times better water solubility as compared to riboflavin. Currently, FMN is produced by chemical phosphorylation of riboflavin, however, final product contains up to 25% of flavin impurities. Microbial overproducers of FMN are known, however, they accumulate this coenzyme in glucose medium. Current work shows that the recombinant strains of the flavinogenic yeast Candida famata with overexpressed FMN1 gene coding for riboflavin kinase in the recently isolated by us advanced riboflavin producers due to overexpression of the structural and regulatory genes of riboflavin synthesis and of the putative exporter of riboflavin from the cell, synthesized elevated amounts of FMN in the media not only with glucose but also in lactose and cheese whey. Activation of FMN accumulation on lactose and cheese whey was especially strong in the strains which expressed the gene of transcription activator SEF1 under control of the lactose-induced LAC4 promoter. The accumulation of this coenzyme by the washed cells of the best recombinant strain achieved 540 mg/L in the cheese whey supplemented only with ammonium sulfate during 48 h in shake flask experiments.


Assuntos
Debaryomyces , Mononucleotídeo de Flavina , Saccharomyces cerevisiae , Candida/genética , Lactose , Riboflavina , Glucose
12.
Microb Biotechnol ; 16(2): 404-417, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36420701

RESUMO

The dairy industry processes vast amounts of milk and generates high amounts of secondary by-products, which are still rich in nutrients (high Chemical Oxygen Demand (COD) and Biochemical Oxygen Demand (BOD) levels) but contain high concentrations of salt. The current European legislation only allows disposing of these effluents directly into the waterways with previous treatment, which is laborious and expensive. Therefore, as much as possible, these by-products are reutilized as animal feed material and, if not applicable, used as fertilizers adding phosphorus, potassium, nitrogen, and other nutrients to the soil. Finding biological alternatives to revalue dairy by-products is of crucial interest in order to improve the utilization of dry dairy matter and reduce the environmental impact of every litre of milk produced. Debaryomyces hansenii is a halotolerant non-conventional yeast with high potential for this purpose. It presents some beneficial traits - capacity to metabolize a variety of sugars, tolerance to high osmotic environments, resistance to extreme temperatures and pHs - that make this yeast a well-suited option to grow using complex feedstock, such as industrial waste, instead of the traditional commercial media. In this work, we study for the first time D. hansenii's ability to grow and produce a recombinant protein (YFP) from dairy saline whey by-products. Cultivations at different scales (1.5, 100 and 500 ml) were performed without neither sterilizing the medium nor using pure water. Our results conclude that D. hansenii is able to perform well and produce YFP in the aforementioned salty substrate. Interestingly, it is able to outcompete other microorganisms present in the waste without altering its cell performance or protein production capacity.


Assuntos
Debaryomyces , Animais , Debaryomyces/metabolismo , Saccharomyces cerevisiae/metabolismo , Indústria de Laticínios , Cloreto de Sódio/metabolismo , Proteínas Recombinantes/metabolismo
13.
Braz. J. Pharm. Sci. (Online) ; 59: e21508, 2023. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1439512

RESUMO

Abstract Ellagic acid (EA) is a phenolic biomolecule. For its biosynthesis, a source of ellagitannins is required, such as strawberries and yeasts, as precursors of the tannase and ß-glucosidase enzymes responsible for hydrolysis of ellagitannins. Two experimental mixture designs were applied., varying the yeast concentration and the number of ellagitannins in the culture medium, evaluating the enzymatic activity and ellagic acid biosynthesis. Aiming to find the optimal compositions of the non-conventional yeasts assessed in the research to biosynthesize ellagic acid feasibly and efficiently using a response surface performing the statistical analysis in the StatGraphics® program for obtaining a higher yield and optimizing the ellagic acid synthesis process, the results indicate that the strains Candida parapsilosis ITM LB33 and Debaryomyces hansenii ISA 1510 have a positive effect on the synthesis of ellagic acid, since as its concentration increases in the mixture the concentration of ellagic acid in the medium also increases; on the other hand, the addition of Candida utilis ITM LB02 causes a negative effect, resulting in the compositions of 0.516876, 0.483124 and 2.58687E-9 respectively, for a treatment under the same conditions, an optimal value of ellagic acid production would be obtained. With an approximate value of 7.33036 mg/mL


Assuntos
Leveduras/classificação , Reatores Biológicos/classificação , Ácido Elágico/síntese química , Otimização de Processos , Debaryomyces/classificação , Candida parapsilosis/classificação
14.
Environ Microbiol ; 24(11): 5051-5065, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35920032

RESUMO

If life exists on Mars, it would face several challenges including the presence of perchlorates, which destabilize biomacromolecules by inducing chaotropic stress. However, little is known about perchlorate toxicity for microorganisms on the cellular level. Here, we present the first proteomic investigation on the perchlorate-specific stress responses of the halotolerant yeast Debaryomyces hansenii and compare these to generally known salt stress adaptations. We found that the responses to NaCl and NaClO4 -induced stresses share many common metabolic features, for example, signalling pathways, elevated energy metabolism, or osmolyte biosynthesis. Nevertheless, several new perchlorate-specific stress responses could be identified, such as protein glycosylation and cell wall remodulations, presumably in order to stabilize protein structures and the cell envelope. These stress responses would also be relevant for putative life on Mars, which-given the environmental conditions-likely developed chaotropic defence strategies such as stabilized confirmations of biomacromolecules or the formation of cell clusters.


Assuntos
Debaryomyces , Marte , Percloratos/metabolismo , Meio Ambiente Extraterreno , Proteômica
15.
Int J Food Microbiol ; 375: 109744, 2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-35660256

RESUMO

Penicillium nordicum is the main ochratoxin A (OTA) producing mould in dry-cured meat products. The use of autochthonous microorganisms as protective cultures is a promising strategy to control this hazard. The aim of this work was to evaluate the effect of Debaryomyces hansenii and Staphylococcus xylosus isolated from dry-cured meat products as biocontrol agents (BCAs) against P. nordicum during the ripening of dry-cured fermented sausages. The BCAs were added to the dough, and P. nordicum were inoculated on the surface after stuffing. Then, the sausages were ripened following a traditional processing. The growth of the microorganisms was determined by plate count at the beginning and at the end of ripening. To assess the implantation of BCAs in the sausages, the yeasts and staphylococci isolated from the sausages at the end of processing were identified by sequencing the 16S and 18S rRNA respectively, and they were characterized by pulsed field gel electrophoresis (PFGE) of the chromosomal DNA. OTA was quantified by UHPLC-MS/MS. BCAs were able to colonise and develop throughout the processing. Although none of the BCAs reduced the growth of P. nordicum, a OTA decrease was observed in the sausages inoculated with D. hansenii individually or combined with S. xylosus. The drop of OTA amount was particularly marked in the portions where the casing was damaged allowing the mould to grow inside the sausages. In these areas, OTA was not detected in the inoculated batches. In conclusion, D. hansenii could be proposed as BCA individually or in combination with S. xylosus for the biocontrol of OTA hazard in dry-cured fermented sausages.


Assuntos
Debaryomyces , Produtos da Carne , Penicillium , Microbiologia de Alimentos , Fungos , Produtos da Carne/análise , Staphylococcus , Espectrometria de Massas em Tandem
16.
Braz J Microbiol ; 53(3): 1533-1547, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35488980

RESUMO

The aim of this study was to evaluate the biosynthesis of flavor compounds from rice bran by fermentation facilitated by Kluyveromyces marxianus and Debaryomyces hansenii. The growth of both yeasts was assessed by specific growth rates and doubling time. The biosynthesis of flavor compounds was evaluated by gas chromatography-olfactometry (GC-O), gas chromatography-mass spectrometry (GC-MS), and Spectrum™ sensory analysis. The specific growth rate (µ) and doubling time (td) of K. marxianus was calculated as 0.16/h and 4.21h, respectively, whereas that of D. hansenii was determined as 0.13/h and 5.33h, respectively. K. marxianus and D. hansenii produced significant levels of higher alcohols and acetate esters from rice bran. Results showed that K. marxianus can produce 827.27 µg/kg of isoamyl alcohol, 169.77 µg/kg of phenyl ethyl alcohol, and 216.08 µg/kg of phenyl ethyl acetate after 24-h batch fermentation. A significant amount of isovaleric acid was also synthesized by K. marxianus (4013 µg/kg) after the batch fermentation of 96 h. 415.64 µg/kg of isoamyl alcohol and 135.77 µg/kg of phenyl ethyl acetate was determined in rice bran fermented by D. hansenii after 24-h fermentation. Fermented cereals and rose were the characteristic flavor descriptors of the fermented rice bran samples. Rose flavor in fermented rice bran samples was found to be associated with phenyl ethyl alcohol, phenyl ethyl acetate, isoamyl acetate, and guaiacol. Thus, the findings of this study demonstrate that the valorization of rice bran can be achieved with the production of natural flavor compounds by yeast metabolism.


Assuntos
Debaryomyces , Kluyveromyces , Oryza , Etanol/metabolismo , Fermentação , Cromatografia Gasosa-Espectrometria de Massas , Kluyveromyces/metabolismo , Oryza/metabolismo , Leveduras/metabolismo
17.
Food Microbiol ; 105: 104011, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35473972

RESUMO

Fermented soybean products are gaining attention in the food industry owing to their nutritive value and health benefits. In this study, we performed genomic analysis and physiological characterization of two Debaryomyces spp. yeast isolates obtained from a Korean traditional fermented soy sauce "ganjang". Both Debaryomyces hansenii ganjang isolates KD2 and C11 showed halotolerance to concentrations of up to 15% NaCl and improved growth in the presence of salt. Ploidy and whole-genome sequencing analyses indicated that the KD2 genome is haploid, whereas the C11 genome is heterozygous diploid with two distinctive subgenomes. Interestingly, phylogenetic analysis using intron sequences indicated that the C11 strain was generated via hybridization between D. hansenii and D. tyrocola ancestor strains. The D. hansenii KD2 and D. hansenii-hybrid C11 produced various volatile flavor compounds associated with butter, caramel, cheese, and fruits, and showed high bioconversion activity from ferulic acid to 4-vinylguaiacol, a characteristic flavor compound of soybean products. Both KD2 and C11 exhibited viability in the presence of bile salts and at low pH and showed immunomodulatory activity to induce high levels of the anti-inflammatory cytokine IL-10. The safety of the yeast isolates was confirmed by analyzing virulence and acute oral toxicity. Together, the D. hansenii ganjang isolates possess physiological properties beneficial for improving the flavor and nutritional value of fermented products.


Assuntos
Queijo , Debaryomyces , Fabaceae , Probióticos , Saccharomycetales , Debaryomyces/genética , Genômica , Odorantes , Filogenia , República da Coreia , Saccharomyces cerevisiae , Saccharomycetales/genética
18.
World J Microbiol Biotechnol ; 38(6): 99, 2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-35482161

RESUMO

The halophilic yeast Debaryomyces hansenii has been studied for several decades, serving as eukaryotic model for understanding salt and osmotic tolerance. Nevertheless, lack of consensus among different studies is found and, sometimes, contradictory information derived from studies performed in very diverse conditions. These two factors hampered its establishment as the key biotechnological player that was called to be in the past decade. On top of that, very limited (often deficient) engineering tools are available for this yeast. Fortunately Debaryomyces is again gaining momentum and recent advances using highly instrumented lab scale bioreactors, together with advanced -omics and HT-robotics, have revealed a new set of interesting results. Those forecast a very promising future for D. hansenii in the era of the so-called green biotechnology. Moreover, novel genetic tools enabling precise gene editing on this yeast are now available. In this review, we highlight the most recent developments, which include the identification of a novel gene implicated in salt tolerance, a newly proposed survival mechanism for D. hansenii at very high salt and limiting nutrient concentrations, and its utilization as production host in biotechnological processes.


Assuntos
Debaryomyces , Saccharomycetales , Biotecnologia , Debaryomyces/genética , Amigos , Humanos , Saccharomyces cerevisiae , Saccharomycetales/genética
19.
Toxins (Basel) ; 14(3)2022 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-35324677

RESUMO

The killer strains of Debaryomyces hansenii and Wickerhamomyces anomalus species secrete antimicrobial proteins called killer toxins which are active against selected fungal phytopathogens. In our research, we attempted to investigate the role of plasma membrane pleiotropic drug resistance (PDR) transporters (Pdr5p and Snq2p) in the mechanism of defense against killer toxins. Saccharomyces cerevisiae mutant strains with strengthened or weakened pleiotropic drug resistance due to increased or reduced number of mentioned PDR efflux pumps were tested for killer toxin susceptibility. The present study demonstrates the influence of the Snq2p efflux pump in immunity to W.anomalus BS91 killer toxin. It was also shown that the activity of killer toxins of D. hansenii AII4b, KI2a, MI1a and CBS767 strains is regulated by other transporters than those influencing W. anomalus killer toxin activity. In turn, this might be related to the functioning of the Pdr5p transporter and a complex cross-talk between several regulatory multidrug resistance networks. To the best of our knowledge, this is the first study that reports the involvement of PDR transporters in the cell membrane of susceptible microorganisms in resistance to killer yeasts' toxins.


Assuntos
Debaryomyces , Toxinas Biológicas , Membrana Celular , Resistência a Medicamentos , Proteínas de Membrana Transportadoras , Saccharomyces cerevisiae , Saccharomycetales
20.
World J Microbiol Biotechnol ; 38(2): 27, 2022 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-34989905

RESUMO

Natural hypersaline environments are inhabited by an abundance of prokaryotic and eukaryotic microorganisms capable of thriving under extreme saline conditions. Yeasts represent a substantial fraction of halotolerant eukaryotic microbiomes and are frequently isolated as food contaminants and from solar salterns. During the last years, a handful of new species has been discovered in moderate saline environments, including estuarine and deep-sea waters. Although Saccharomyces cerevisiae is considered the primary osmoadaptation model system for studies of hyperosmotic stress conditions, our increasing understanding of the physiology and molecular biology of halotolerant yeasts provides new insights into their distinct metabolic traits and provides novel and innovative opportunities for genome mining of biotechnologically relevant genes. Yeast species such as Debaryomyces hansenii, Zygosaccharomyces rouxii, Hortaea werneckii and Wallemia ichthyophaga show unique properties, which make them attractive for biotechnological applications. Select halotolerant yeasts are used in food processing and contribute to aromas and taste, while certain gene clusters are used in second generation biofuel production. Finally, both pharmaceutical and chemical industries benefit from applications of halotolerant yeasts as biocatalysts. This comprehensive review summarizes the most recent findings related to the biology of industrially-important halotolerant yeasts and provides a detailed and up-to-date description of modern halotolerant yeast-based biotechnological applications.


Assuntos
Biotecnologia , Tolerância ao Sal , Leveduras/genética , Leveduras/fisiologia , Basidiomycota , Biocatálise , Biodegradação Ambiental , Debaryomyces , Regulação Fúngica da Expressão Gênica , Saccharomyces cerevisiae , Saccharomycetales , Água do Mar , Cloreto de Sódio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...